Couches minces polymérisées par plasma froid pour la protection contre la corrosion

Corinne Nouvellon Fabian Renaux

Contexte

Polymérisation plasma

- Principe
- Paramètres influents

Exemple d'application pour le traitement anti-corrosion

Polymère plasma « SiO_x »

Alternative à la chromatation Multi-couches protecteur

Polymère plasma: couche mince organique déposée par plasma

Plasma « froid »: Gaz macroscopiquement neutre,

Hors équilibre thermodynamique,

Composé d'ions, d'électrons et de neutres

source des espèces réactives nécessaires à la formation du film

Polymérisation plasma propriétés des films

Propriétés intrinsèques du film

réticulation élevée

dense bonne résistance mécanique bonne stabilité thermique difficilement soluble

Fonctionnalité de la surface du film formé

précurseur fonctionnalisé

paramètres de la décharge

post traitement par plasma

dérivation chimique

DEPOTS POLYMERE PLASMA EXEMPLES D'APPLICATIONS

Surfaces Hydrophobes ou hydrophiles

PMMA traité : fonctions OH : surface hydrophile (Lentilles de contact)

Hydrophobicité (Traitement de fibres, vêtements)

✓ Biocompatibilité (implant,...)

Fonctions amines ou carboxyles en surface de prothèses

- Adhésion des surfaces
- ✓ Couche barrière perméabilité (packaging)

Anti corrosion

SiO₂

Décharge Inductive RF

Monomères en phase vapeur et gaz réactif

Initiation de la polymérisation de précurseurs organiques par plasma

schéma d'un dépôt de « polysiloxane » à partir de HMDSO activé par plasma

Composition variable (Présence de OH, de méthyle...)

Dépôts de SiO_x ou SiC_xO_y suivant les paramètres

Polymérisation plasma Paramètres influents

Polymérisation plasma Analyse du plasma par spectrométrie de masse

Composition du plasma en fonction du débit en oxygène

Angle de contact et composition du film (XPS) en fonction du débit en oxygène

Composition du plasma en fonction de la puissance

à plus haute puissance

Disparition des masses élevées

Fragmentation plus importante du précurseur (augmentation de n_e)

Angle de contact et composition du film (XPS) en fonction de la puissance

Déficit en O : pulvérisation préférentielle lors du profil XPS

Propriétés des films en fonction de la puissance et du débit en O2

Traitements de l'acier galvanisé par polymère plasma

- Influence du débit d'oxygène
- Du pré traitement

décharge capacitive RF dans Ar- O_2

Décaper la surface par bombardement Bruler la pollution organique

Tests au brouillard salin pour la tenue à la corrosion

Vieillissement au brouillard salin: % rouille blanche en fonction du % O2

% rouille blanche en fonction de la durée du décapage avant dépôt

Après 120 h brouillard salin

Acier Galvanisé

Acier Galvanisé avec dépôt type SiO₂

Dépôt inorganique type SiO₂ Décapage in situ par plasma